步入四年级,家长们会发现孩子在做应用题时,常常会感觉很吃力,读不懂题目的意思,从而写出错误的答案!别担心,卓尔数学团队老师来帮你!这里老师总结了关于应用题的做特方法,这里分享给同学及家长们!
一、数量关系分析法。 数量关系是指应用题中已知数量和未知数量之间的关系,只有搞清数量关系,才能根据四则运算的意义恰当的选择算法,把数学问题转化为数学式子,通过计算进行解答。
数量关系分析法分为三步:
(一)寻找题中的数量。
(二)明确各数量间的关系。
(三)解决各个产生的问题。
从应用题的已知条件出发,进而转化成具体的生活情景,根据情景进一步的归纳概括,明确相应的数量关系,简化题目结构。
如:“学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级3倍,五年级参加的人数比三、四年级参加的总人数多12人.五年级参加比赛的有多少人?”
师:题中有几个数量呢?
生:三个。
师:哪两个数量之间有直接关系呢?
生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。
师:这两个数量间的关系让我们头脑中产生一个什么问题呢?
生:四年级有多少人参加比赛?
师:怎样列式解答这个问题呢?
生:用乘法35 ×3=105(人)。
师:现在又多了一个数量:四年级有105人参加比赛,那么哪两个数量间又
存在关系呢?根据他们的关系可以产生一个怎样的问题?
生:三年级有35人参加比赛,四年级有105人参加比赛。
问题是:三四年级参加比赛一共有多少人?
师:所以第二步算式怎样列呢?
生:105+35=140(人)。
师:根据现在已经产生的数量,又有哪两个数量间的关系存在呢?
生:三、四年级参加比赛一共有多140人,五年级参加的人数比三、四年级参加的总人
数多12人.
师:这两个数量间的关系能帮助我们解决什么问题呢?
生:五年级参加比赛的有多少人?
师:那么解决最后问题的算式怎样列出呢?
生;140+12=152(人)
一般而言,小学生的一个思维特点是:以具体形象的思维为主要形式,然后逐渐的向逻辑性较强的抽象思维过度。但是这种抽象的逻辑思维也是和具体的感性思维联系在一起的,所以把抽象的数量关系转化成形象性的事物,从而让学生更好的去理解、去思考,启发他们去思考背后的逻辑关系,从而掌握有效的关系。
二、问题中心散射倒推法。
所谓的“问题中心散射法”就是根据分析法这一思路模式,让学生从最后的问题出发,不断地逆向推理,层层解决。即从问题所要求的量开始探究,先要想一下,要知道所求的量,就必须知道的条件是什么,要使这些条件成立,又必须具备另外哪些条件,这样推究下去,直到所需要的条件都是题目中所给的已知条件时,问题就解决了。还是以上面这一道应用题为例来谈谈吧。
师:这道题的问题是“五年级参加比赛的有多少人?”要想解决这个问题,在题里面寻 找那一句关键的信息提示呢?
生:五年级参加的人数比三、四年级参加的总人数多12人。
师:看来,现在要解决三、四年级参加比赛的总人数才是更关键的。那么这个问题能一 下子解决吗?
生:不能,因为三年级参加比赛的人数知道了,可四年级参加比赛的人数不知道。
师:那么四年级参加比赛的人数又怎么求呢?根据题中的什么数学信息呢?
生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。
列式是35 ×3=105(人)师:根据我们刚才的分析,接下来第二步求什么/怎样列式? 生:三、四年级参加比赛的总人数是多少?105+35=140(人)
师:接下来呢? 生:五年级参加的人数是多少?140+12=152(人)
三、线段图示助解分析法
运用图示法解析应用题,是培养学生思维能力的有效方法之一。图示法不仅可以形象地、直 观地反映应用题的数量关系,启发学生的解题思路,帮助学生找到解题的途径,而且通过画图的训练,可以调动学生思维的积极性,提高学生分析问题和解决问题的能力。教师的教学的过程中,需要让学生通过具体的情景进行感知,进而理解背后的数量关系。它既能提炼概括出应用题题意,又利于学生借助线段直观揭示数量关系。
在解答应用题时,可以先把应用题中的已知条件和所求的问题用图表示出来,然后通过图去寻找解答应用题的方法。在应用题教学中还可以采用许多方法。如列表法、比较法、方程法等,注重教给学生学习的方法,使学生能逐步独立地分析和解决问题。
在进行小学数学应用题教学中,我们卓尔数学会帮助学生形成正确的思维规律,掌握了正确的思维方法,做到举一反三,切实提高解答应用题的能力。但正所谓“拳不离手,曲不离口”。无论哪种技能的掌握都要勤加练习。当然对于应用题来讲并不是练得越多越好,练习要练在“点”上。练习的题目要有代表性,全面性。这样不仅巩固了新知识,又拓展了旧知识,卓尔教育老师在布置作业时也会根据孩子的情况,教授他们适合自己的学习方法,从而开阔学生的解题思路,提高学生的解题能力。
- 还没有人评论,欢迎说说您的想法!